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The two-dimensional Navier-Stokes equations governing the steady flow of a viscous 
incompressible fluid are usually written in the convective or the divergence form. There is a 
continuing controversy in the literature about the superiority of the divergence form over the 
convective form. The effect of central and upwind differencing is examined on each of these 
formulations and it is concluded that none of these formulations has absolute superiority over 
the other. The problem of the driven cavity is taken as a test model. 

1. INTRODUCTION 

The two-dimensional Navier-Stokes equations have been solved by many 
researchers and a variety of finite difference, finite element and other techniques have 
been proposed in the literature. Many researchers, especially those using finite 
difference methods, have concentrated on solving the convective form of the 
Navier-Stokes equations while others have solved the divergence formulation, which 
automatically satisfies the principle of mass conservation. Some of these solutions, 
especially for small Reynolds numbers, have shown good agreement. However, there 
remains much disagreement over the characteristics of the numerical solutions for 
moderate to large Reynolds numbers. 

In this paper we examine the numerical solutions of both convective and 
divergence forms of the Navier-Stokes equations through the use of central and 
upwind differencing of the two formulations. The numerical solutions of the four 
finite difference approximations are obtained under identical conditions and the 
behaviour of these solutions is critically analyzed. 

2. THE FORMULATIONS 

The Navier-Stokes equations governing the steady flow of an incompressible 
viscous fluid may be written in the nondimensional forms 

v2w - R(uw, + zlw,) = 0, 
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v*w - R((uw), t (uo)J = 0. (2) 

Here Eq. (1) is the convective (advective) form of the vorticity transport equation. 
Equation (2) is the divergence (conservative) form, which automatically satisfies the 
principle of mass conservation (a, + u, = 0). The velocities u, Y are related to the 
streamfunction w and vorticity o through the relations 

u= YJy, v=-lyx; 

o=vx-uy=-vju. 
(3) 

We consider the problem of the driven cavity [ 1-3, 5-7, 91 as a model. The bounday 
conditions are those of no-slip on the boundary of the square (0 <x, y < 1) (see 
Fig. 1): 

v==o, v/),=-l on the sliding wall y = 1, 

w= 0, w, = 0 on the stationary walls. 
(4) 

The square cavity is covered by a set of (n + 1) x (n t 1) mesh points uniformly 
spaced with mesh spacing h = I/n. Equations (I), (2) may be discretized by using 
central difference approximations for all derivatives. The resulting schemes are called 
CDC (Central Difference Convective Scheme) and CDD (Central Difference 
Divergence Scheme), respectively. The other possibility is to use central differences 
for V’w and one-sided differences for the first order derivative in Eqs. (l), (2) thus 
yielding UDC (Upwind Difference Convective Scheme) and UDD (Upwind 
Difference Divergence Scheme), respectively. For detailed description of these 
schemes, see [ 1, 5-71. 

After the vorticity equation (1) or (2) has been approximated by a finite difference 
scheme at each mesh point, the resulting algebraic equations may be written in a 
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matrix form with non-symmetric and non-constant coefficient matrix. This matrix is 
diagonally dominant for the upwind schemes UDC, UDD but not diagonally 
dominant for the central schemes CDC, CDD. The matrix equation is solved in 
conjunction with the usual second order approximation of the streamfunction 
equation V2w =- w which yields a symmetric, positive definite coefficient matrix. 
The coupling is provided by the vorticity values on the boundaries of the cavity 
which are approximated by a second order approximation called the (2, 1) formula in 
[6, 71. As an example, on the left boundary x = 0 we write 

wOj = -h-2[4Wl,j - $W*,j], l<j<n-1. (5) 

3. THE NUMERICAL SOLUTIONS 

The numerical solution of the coupled algebraic equations is obtained using an 
outer iterative procedure described in detail in [6, 71. At each outer iteration the 
algebraic equations corresponding to (l)--(2) and (3) are solved by direct solvers 
such as LEQTlB from the IMSL package and MA28 from the Harwell package 141. 
The damping parameters are used according to the discussion in [6,7] and the outer 
iterations are continued until the successive v/, w iterates differ by an amount smaller 
than low4 at each mesh point. 

We obtained the numerical solutions of the four finite difference schemes (CDC, 
UDC, CDD, UDD) for several Reynolds numbers in the range l-5000 with mesh 
sizes h = l/20, l/32. For small Reynolds numbers all schemes converged quite 
satisfactorily. When the Reynolds number was increased, two of these schemes 
exhibited convergence problems. The solutions of CDC were not obtained beyond 
R = 1000 as these solutions already became incorrect, both qualitatively and quan- 
titatively [7]. The outer iterative procedure with UDD exhibited an oscillatory 
behaviour for R > 1000 with. single precision arithmetic. With double precision, 
however, monotonic convergence could be achieved for UDD for R = 5000. On the 
other hand, UDC and CDD converged for all values of R. We note at this point that 
the UDD scheme is computationally more complex to code than are any of the other 
schemes. 

In order to compare the effect of the four finite difference schemes, we obtained 
their solutions under identical conditions. The values of streamfunction at the centre 
of primary vortex (wvc = maxij ] v/J) are given in Table I. 

For small Reynolds numbers, the central difference schemes CDC, CDD yield 
approximately the same values. For larger Reynolds numbers, CDD yields better 
values compared to the CDC solutions. The CDC solutions begin to deteriorate and 
exhibit oscillatory behaviour in the vorticity values on the sliding wall y = 1 for 
R > 500 [7]. A comparison of the upwind solutions shows that UDC yields better 
solutions for small R. For large values of R, both UDC and UDD suffer from the 
effects of false diffusion [3, lo] and yield approximately similar solutions. The values 
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TABLE I 

Strength of Primary Vortex vvc (h = l/20) 

R CDC UDC CDD UDD 
~. 

1 0.0995 0.0995 0.0995 0.0994 
10 0.0993 0.0998 0.0994 0.0984 

100 0.0969 0.1001 0.1015 0.0918 
500 0.0647 0.0775 0.1024 0.0729 

1000 0.0336 0.0599 0.0972 0.0626 
5000 - 0.0405 0.0727 0.0402 

TABLE II 

Value of Vorticity at the Vortex Centre wvc (h = l/20) 

- 

R CDC UDC CDD UDD 

1 3.0154 3.0162 3.0154 3.0109 
10 3.0010 3.0094 3.0040 2.9591 

100 3.3636 3.1250 3.0544 2.7880 
500 1.9048 2.6757 2.0504 1.5876 

1000 40.6211 2.6299 1.7451 1.2649 
5000 - 1.2415 1.1306 0.5800 

TABLE III 

Drag on the Moving Wall C, 

R CDC UDC CDD UDD 

1 25.4428 25.4 190 25.4422 25.4853 
10 2.5495 2.5264 2.5474 2.5913 

100 0.2950 0.2669 0.2788 0.3080 
500 0.1095 0.0762 0.08 11 0.0922 

1000 0.0736 0.0480 0.050 1 0.0565 
5000 - 0.0137 0.0150 0.0161 

of vorticity at the vortex centre are given in Table II. These values confirm the obser- 
vations made above. 

We also give the value of drag coeffkient on the sliding wall defined by 

(6) 

where F is the value of the shear force on the sliding wall [6]. The integral here is 
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obtained by using trapezoidal rule over the 21 mesh points on the sliding wall. The 
values of C, are given in Table III. 

It is noted that for small R, CDC and CDD yield similar values of Cu. It is also 
noted that in comparison to the CDD solutions, UDC yields a lower values of C, 
whereas UDD yields a higher values of Cu. 

A few authors have mentioned the appearance of a third secondary vortex in the 
upper right corner of the cavity near the upstream singular point. DeVahl Davis and 
Mallinson [3] observed this separation for R = 2000 with CDD and a non-uniform 
3 1 X 3 1 mesh. Olson and Tuann [ 9] used a finite element method and discovered the 
appearance of such a vortex at R = 1500. In a recent work, Chen et al. [2] also 
reported the apearance of such a secondary vortex at R = 2000 using a finite analytic 
method with 61 x 61 mesh. In our computations, such a vortex was observed for 
R > 1000 (h = l/20). H owever, the separation near the upstream singular corner was 
only observed with CDD. For R = 1000 the centre of this secondary vortex was 
found to be (2, y), where 2 E (0.95, 1 .O) and 7 = 0.90. For R = 2000 and 5000, the 
centre was (0.95,0.90) with ‘y,, = -0.0016, wvc = -6.1036 for R = 2000 and 
v vc =-0.0033, wvc = -7.1894 for R = 5000. 

It is instructive to examine the behaviour of vorticity values on the right wall 
(x = 1) with CDD; see Fig. 2. For small values of R (< IOO), the values of o(l,y) 
increase monotonically from -co at y = 1 to 0 at the separation point (y 2: 0.07) of 
the secondary vortex in the lower right corner LR. At R = 200, this curve has a point 
of inflexion near y = 0.7. For larger values of R, the values of ~(1, y) fail to increase 
monotonically from -co at y = 1 to 0 at the lower separation point. Indeed, the 
oscillation near y = 0.9 becomes large enough for R > 1000, thereby causing the 
appearance of the third secondary vortex near the upstream singular corner. 

At this point it is not clear whether the appearance of this secondary vortex is a 
sign of better accuracy or inaccuracy of the CDD solutions. The CDC solutions 
exhibit oscillatory behaviour in the vorticity values on the sliding wall for large 
Reynolds numbers [7]. The CDD solutions did not exhibit such oscillations; 
however, the behaviour of o( 1, y) (see Fig. 2) may be a sign of forthcoming trouble 
for large values of R. 

It is noted that DeVahl Davis and Mallinson [3], who reported the appearance of 
the third secondary vortex for the first time, used the CDD in their computations. 
Olson and Tuann [ 91 also observed such a vortex in their finite element calculations. 
However, Olson and Tuann [9] obtained their solutions by prescribing u = u = 0 at 
the singular corners which forced the vorticity at (0, 1) and (1, 1) to be 0. In reality 
vorticity at these points should be infinite. They set u = -1, v = 0 at all other nodes 
on the sliding wall y = 1, and allowed the tangential velocity u to vary cubically from 
0 at the corner to -1 at the next node point 19, p. 1261. In such circumstances the 
vorticity values near the singular corners ought not to be considered reliable. 

In a recent paper Gupta et al. [g ] obtained asymptotic expressions for v, w, u, o in 
the neighborhood of singular corners and discovered that the vorticity values on the 
stationary walls (x = 0, x = 1) are very sensitive to the inaccuracies of the numerical 
solution processes. We believe that the appearance of the third corner vortex in the 
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solutions of [2,9] ought to be investigated further to see if this is introduced solely 
by the particular discretization or computational procedure. 

Finally we note that the secondary vortices in the lower corners exhibited a 
shrinking behaviour as R increased with both upwind (UDC, UDD) and central 
(CDD) schemes. With the upwind schemes, the lower right vortex (LR) disappeared 
at R = 5000 whereas the lower left (LL)vortex disappeared with CDD at R = 5000. 

4. CONCLUSIONS 

We have presented a comparison of numerical solutions which were obtained using 
central and upwind difference approximations of the convective as well as divergence 
form of the Navier-Stokes equations for the driven cavity problem. The divergence 
form yields solutions vastly superior to those of the convective form when central 
differencing is used, especially for large Reynolds numbers. However, when upwind 
differencing is used, the solutions of the two formulations are almost equivalent in 
accuracy, the convective form having a slight edge over the divergence form for small 
Reynolds numbers. The upwind formulation of the divergence form is 
computationally more complex than that of the convective form. Moreover, Gresho 
and Lee [IO] have recently raised the question of the validity of any upwind solutions 
for large Reynolds numbers and it seems unnecessary to use the divergence form with 
upwind formulations. 

The central difference solutions of the divergence form do not exhibit the 
oscillatory behaviour observed with the convective form [7]. The CDD solutions 
remain satisfactory for larger Reynolds numbers than do the CDC solutions. 
However, the CDD solutions exhibit a secondary vortex near the upstream singular 
corner. 

It is, at present, not certain whether the appearance of such a secondary vortex is a 
sign of better accuracy or inaccuracy of the CDD solutions. One could conjecture, as 
do Gresho and Lee [lo], that the appearance of such a vortex is a “signal” that the 
mesh is too coarse to resolve the flow correctly for the Reynolds number used. When 
the mesh is relined, a similar signal should be observed for higher Reynolds numbers. 
In support of this conjecture we note the apearance of such a signal with a uniform 
21 x 21 mesh for R > 1000. In the work of DeVahl Davis and Mallinson [3 ] such a 
signal appears for R = 2000 with a nonuniform 3 1 x 3 1 mesh. 

Our solutions, especially those obained for large Reynolds numbers, may not be 
very accurate because of the crude mesh used. However, the relative behaviour of 
these solutions, which were obtained under identical conditions, is believed to be 
representative of the general case. 
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